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● Rapid and accurate building detection is critical for effective disaster response and 
resource allocation.

● Existing methods are often overwhelmed by the scale and urgency of post-disaster 
needs.

● This project introduces machine learning solutions, specifically tailored to enhance 
speed and accuracy in building detection under disaster conditions.

Introduction
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Background & Related Work

● Conventional building detection methods are manual and slow, struggling 
to meet the demands of timely disaster response.

● Recent advancements in CNNs have shown promise in remote sensing but 
are underutilized in disaster scenarios.

● Our study builds on existing knowledge and introduces machine learning 
architectures tailored for post-disaster building detection.
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Data Preparation

● High-resolution satellite images are segmented into 1024x1024 pixel chunks using 
rasterio and PIL, optimized for efficient processing.

● GeoPandas is employed to create precise building masks from shapefiles, essential 
for accurate model training.

● Images and masks are converted into TensorFlow-compatible TFRecord files, 
enhancing the model's training efficiency.













MODEL TRAINING
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● The Mask R-CNN Inception ResNet V2 1024x1024 model is trained using 
NVIDIA A100 GPUs, enabling high-speed computations.

● Extensive testing of various hyperparameters, such as learning rates and batch 
sizes, is conducted to find the optimal model settings.

● Training is performed on Sapelo2's high-performance computing resources, 
allowing for robust model development.

Model Training
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Model Evaluation

● Model performance is assessed using precision, recall, and Intersection 
over Union (IoU) metrics.

● These metrics provide critical insights into the model's ability to identify 
and accurately delineate buildings from satellite imagery.
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https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
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EXPERIMENTS
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07



● The evaluation phase involves rigorous testing across different model 
configurations and extensive data sets.

● Results show that our machine learning model significantly outperforms traditional 
methods, demonstrating high levels of precision and recall.

● Detailed analysis of performance metrics is facilitated by Neptune, which tracks 
each iteration of model training.

Experiments & Results
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● The project demonstrates the viability of using advanced machine 
learning techniques to enhance building detection in disaster-stricken 
areas.

● Future improvements will focus on integrating real-time satellite 
imagery to provide immediate assessments post-disaster.

● Plans include expanding the model's scalability to different geographical 
settings and incorporating continuous learning mechanisms to adapt to 
new data.

Conclusion & Future Work
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